
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2010; 63:297–312
Published online 11 May 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2067

High-fidelity aerodynamic shape optimization of modern
transport wing using efficient hierarchical

parameterization

A. M. Morris, C. B. Allen∗,† and T. C. S. Rendall

University of Bristol, Avon, BS8 1TR, U.K.

SUMMARY

Aerodynamic shape optimization technology is presented, using an efficient domain element parameter-
ization approach. This provides a method that allows geometries to be parameterized at various levels,
ranging from gross three-dimensional planform alterations to detailed local surface changes. Design param-
eters control the domain element point locations and, through efficient global interpolation functions,
deform both the surface geometry and corresponding computational fluid dynamics volume mesh, in a
fast, high quality, and robust fashion. This results in total independence from the mesh type (structured
or unstructured), and optimization independence from the flow-solver is achieved by obtaining gradient
information for an advanced gradient-based optimizer by finite-differences. Hence, the optimization tool
can be used in conjunction with any flow-solver and/or mesh generator. Results have been presented
recently for two-dimensional aerofoil cases, and shown impressive results; drag reductions of up to 45%
were demonstrated using only 22 active design parameters. This paper presents the extension of these
methods to three dimensions, with results for highly constrained optimization of a modern aircraft wing
in transonic cruise. The optimization uses combined global and local parameters, giving 388 design vari-
ables, and produces a shock-free geometry with an 18% reduction in drag, with the added advantage of
significantly reduced root moments. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Computational fluid dynamics (CFD) methods are now commonplace in aerospace industries and at
the forefront of analysis capabilities, providing a fast and effective method of predicting a design’s
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aerodynamic performance. However, with the increasing complexity of designs, engineers often
struggle to interpret the intricacies of the CFD results sufficiently to be able to manually alter the
geometry to improve performance. Hence, there has been an increase in demand for intelligent and
automatic shape optimization schemes. This requires combining geometry control methods with
numerical optimization algorithms, to provide a mechanism to mathematically seek improved and
optimum designs, using CFD as the analysis tool.

Shape optimization requires consideration of three issues, each of which have numerous solu-
tions: shape parameterization including CFD surface and volume mesh deformation, computation
of the design variable derivatives, and effective use of these derivatives to improve design. Geom-
etry parameterization is critical for effective shape optimization, and is the method of representing
the design surface, and defining the degrees of freedom in which the geometry can be altered and,
ideally, this should be linked with an effective method of deforming the design surface and volume
mesh in a corresponding fashion. Parameterizing complex shapes remains a serious obstacle to
both the manual and automatic CFD-based optimizations, and a wide variety of shape control
and morphing methods have been developed, see for example [1–11]. However, many of these
approaches do not allow sufficiently free-form design and can produce infeasible shapes [12, 13].
Furthermore, most methods do not have a suitable method to deform the CFD mesh once the
surface has been changed, and regeneration is often required. This may not be a problem for
simple geometries, small geometric changes, and/or small meshes, but can in some cases make
automation of the optimization process impossible.

Exploration of as much of the design space as possible is important, but having an excessive
number of deformation degrees of freedom (design variables) can make optimization impracti-
cally expensive. Hence, an efficient domain element shape parameterization technique has been
developed, wherein design surface and volume mesh deformation are accomplished through global
interpolations using radial basis functions (RBFs), such that when the positions of the domain
element are altered, both the design surface and its corresponding CFD volume mesh are deformed
in a high-quality fashion [14, 15]. The parameterization technique allows for geometry control
at various fidelity levels, ranging from fine, detailed surface geometry changes to gross three-
dimensional planform alterations. Furthermore, the method works on point clouds, i.e. no connec-
tivity information is required, and so is totally independent of the CFD mesh type, removing any
mesh generation or flow-solver dependence.

Independence from the flow-solver is ensured by obtaining the sensitivities required for opti-
mization via finite-difference. This allows numerous options in terms of optimization approaches,
and an advanced feasible sequential quadratic programming (FSQP) [16–18] gradient-based opti-
mizer has been integrated into the framework. Independence from both mesh generation approach
and flow-solver ensures a totally generic tool has been developed. This advanced optimiza-
tion based on domain element parameterization has been proven in two dimensions, demon-
strating large drag reductions for highly constrained aerofoil cases, both viscous and inviscid
[19, 20].

Hence, this paper presents the extension to three dimensions of the shape parameterization,
mesh deformation, and optimization method. Optimization is applied here to the Multidisciplinary
Optimization (MDO) wing (a large modern transport aircraft wing, the result of a previous Euro-
pean Community (EC) project [21–23]) in the transonic cruise condition. Detailed results of the
optimization performed with the highest fidelity so far used are presented. This is a combination
of global parameters and local surface geometry changes, resulting in 388 design variables, and
the objective is drag minimization.
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2. DOMAIN ELEMENT PARAMETERIZATION

Finite-differences are used here to compute design variable sensitivities, since a ‘wrap-around’
framework has been developed. Hence, the choice of parameterization method is absolutely critical
in terms of the computational cost of any optimization and an efficient method, i.e. as few design
variables as possible, is essential. However, the method must still allow sufficient free-form design
such that any likely optimum design that may exist is achievable.

Numerous parameterization methods have been presented for CFD shape optimization, and these
can be split into those that parameterize the aerodynamic mesh or those that parameterize the design
geometry from which a mesh is generated. Mesh parameterization methods are generally inde-
pendent of the mesh generation package. This requires a mesh deformation algorithm, but allows
the use of previously generated meshes for optimization. Methods of this nature include discrete
[24–26], analytical, basis vector [4], free-form deformation (FFD) [5], and domain element methods
[27]. Geometry parameterization methods are inherently linked with the mesh generation package,
and optimization requires automatic mesh generation tools. Methods of this nature include partial
differential equation methods [1, 8], polynomial or spline [9], CAD, and recently CST [10, 11]
methods. The reader is referred to [28, 29] for comprehensive reviews of parameterization
methods.

The parameterization method developed here uses a domain element to control the shape of
the design surface. A global multivariate interpolation has been developed using RBFs, which
then controls the surface geometry and the locations of the volume mesh points directly from the
domain element node locations. All points are treated as point clouds, so the parameterization
technique is totally independent from the mesh type and generation package. The mapping is only
required once for the initial design, and updates to the geometry and the corresponding mesh are
provided simultaneously by application of the multivariate interpolation; this is extremely fast and
efficient. In [15] it was demonstrated that the initial mesh quality is preserved, even for large
surface deformations, for the same MDO geometry considered here.

The three-dimensional domain element consists of an evenly distributed series of two-
dimensional slices located according to local surface geometry. However, individual locations of
the domain element points are not chosen as the design variables, but a hierarchy of intuitive
shape deformation design variables has been developed. So far, three levels of design variables
have been adopted. At the most global level, design variables correspond to motions of all domain
element nodes simultaneously, for example altering wing angle of attack, sweep, or twist. At
the intermediate level, design variables control the rotation, chord, thickness, and position of
each two-dimensional domain element slice separately, and at the most local level very small
groups or individual domain element nodes are altered to provide detailed and local shape
changes.

An example parameterization and deformation of a cylinder surface is presented in Figure 1.
Figure 1(a) shows the original surface and domain element; seven square domain element slices
are used, and examples of local, intermediate, and global deformations are shown. (b) shows
movement of an individual domain element point, a local design variable, (c) shows the rigid twist
of the fourth slice, an intermediate design variable, and (d) shows rigid linear twist of the entire
domain element, a global design variable. Also shown in (e) is a combination of global twist and
a local perturbation. The interpolation method is seen to provide a smooth surface change, and
smooth and very high-quality mesh deformation results from this, see [15]. Figure 2 depicts the
domain element parameterization of the MDO wing considered in this paper.
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Figure 1. Cylinder parameterization example: (a) cylinder surface and domain element; (b) local perturba-
tion; (c) intermediate perturbation; (d) global perturbation; and (e) combined local and global perturbation.
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Figure 2. MDO parameterization.

2.1. Parameterization formulation

The global dependence between the domain element nodes and the aerodynamic mesh points can
be evaluated, using RBFs [30, 31], and this transfers a deformation of the element, due to a design
variable change, to smoothly alter the aerodynamic shape and its corresponding CFD volume mesh.
Using this method, only an initial mesh of the original design is required to allow optimization.
The interpolation method developed here requires no connectivity information, and can therefore
be applied equally well to either structured and unstructured mesh topologies. Domain element
points and volume mesh points are simply treated as independent point clouds with the dependence
matrix computed only once.

The method used here is similar to that detailed in Allen and Rendall [14, 15], where it is applied
to both CFD–CSD coupling and mesh deformation. The solution of an interpolation problem using
RBFs begins with the form of the required interpolation

f (x)=
i=N∑
i=1

�i�(‖x−xi‖) (1)

where f (x) is the function approximated, the index i identifies the centres for the interpolation
(the domain element nodes in this case), xi is the location of that centre, and � is the function used.
A polynomial term can also be added, to ensure certain properties of the interpolation, see [14, 15],
but is not required here. The coefficients �i are then found by requiring exact recovery of the
original control points.

A system needs to solved relating to the domain element nodes, to evaluate the coefficients
associated with them. Exact recovery of the centres gives (subscript d represents a domain element
control point)

xd =C ax (2)

yd =C ay (3)

zd =C az (4)
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where

xd =

⎛
⎜⎜⎜⎝

xd1
...

xdN

⎞
⎟⎟⎟⎠ , ax =

⎛
⎜⎜⎜⎝

�x1
...

�xN

⎞
⎟⎟⎟⎠ (5)

(Analogous definitions hold for yd and zd and their a vectors) and

C=

⎛
⎜⎜⎜⎝

�d1d1 �d1d2 · · · �d1dN

...
...

. . .
...

�dN d1 �dN d2 · · · �dN dN

⎞
⎟⎟⎟⎠ (6)

where N is the number of domain element nodes. In the above

�d1d2 =�(‖xd1 −xd2‖) (7)

indicates the basis function evaluated on the distance between d1 and d2. To locate the aerodynamic
mesh point positions resulting from the domain element positions, the following matrix must be
formed, where subscript a indicates an aerodynamic node:

A=

⎛
⎜⎜⎜⎝

�a1d1 �a1d2 · · · �a1dN

...
...

. . .
...

�aMd1 �aMd2 · · · �aMdN

⎞
⎟⎟⎟⎠ (8)

where M is the number of aerodynamic mesh points. The positions of the aerodynamic mesh
points, given by the vectors xa , ya , and za , can then be computed by

xa =A ax =A C−1xd =Hxd (9)

ya =A ay =A C−1yd =Hyd (10)

za =A az =A C−1zd =Hzd (11)

There are many ways to implement this approach, but these are not considered here. The
parameterization and RBF interpolation methods have several key properties:

• The number of design variables required to allow free-form design can be very low when
compared with other methods [20].

• Design variables can range in fidelity from the coordinate of a single domain element location,
providing a detailed surface geometry change, to a gross three-dimensional deformation such
as sweep distribution. This can allow designers to choose the fidelity of the optimization.

• Global parameters, for example angle of attack or wing sweep, can be included as design
variables. This is impossible in many other optimization approaches, wherein these quantities
have to be adjusted externally to attempt to satisfy constraints.

• The parameterization technique is independent of the initial geometry, with the domain element
positioned automatically according to the solid surface. This can allow very complex or
multi-element geometries to be parameterized.
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• The interpolation is independent of mesh type or structure, as the position vectors are simply
mesh positions in any order.

• The interpolation is time-invariant, and so only needs to be computed once, prior to any
simulation. The surface geometry and mesh are then deformed very efficiently by matrix–
vector multiplication.

• The interpolation is perfectly parallel, as the matrix and the position vectors can simply be
split into rows and elements required for each partition.

Domain element methods work well with RBF mesh deformation due to the low number of
domain element node points. However, if one were to use spline control points or surface mesh
points in three dimensions, then computational memory issues must be considered [32], but these
are not considered here.

3. OPTIMIZATION METHOD

There are numerous possible approaches in terms of optimization, but practical optimization of
aerodynamic performance of a solid body requires the capability of imposing constraints, for
example minimum thickness, minimum volume, minimum lift, maximummoment, etc. Constrained
gradient-based optimizers are fast and efficient at providing solutions to local optimization problems
[18, 33], and unconstrained optimizers can incorporate constraints by using a penalty function for
designs that are near or beyond the constraint boundary, but these methods are now considered
inefficient and have been replaced by methods that focus on the solution of the Kuhn–Tucker
equations.

The solution of these equations forms the basis of the nonlinear programming algorithm used
here. A constrained quasi-Newton method guarantees superlinear convergence by accumulating
second-order information relating to the Kuhn–Tucker equations using a quasi-Newton updating
procedure; i.e. at each major iteration, an approximation is made of the Hessian of the Lagrangian
function. This is then used to generate a quadratic programming (QP) subproblem where the
solution is used to form a search direction for a line search procedure. This forms the basis
of a sequential quadratic programming (SQP) algorithm, and this approach has been shown to
outperform other tested methods in terms of efficiency, accuracy, and percentage of successful
solutions, over a number of test problems [34]. An FSQP algorithm is used in the current research
and this was originally developed in [16–18]. This particular algorithm has been implemented
across a wide range of optimization problems, most relevant to the application here is the work of
Qin and coworkers [35–38] where the algorithm was used for CFD-based-constrained optimization
of a blended wing body using an inviscid adjoint solver to obtain the sensitivities. The sensitivities
are obtained here via finite-differences, since a generic optimization tool, independent of the flow-
solver used, is the ultimate objective of this work. To ensure no biasing towards one direction and
to increase accuracy, a second-order accurate central-difference finite-difference stencil is used.

4. THREE-DIMENSIONAL AERODYNAMIC OPTIMIZATION

The MDO wing corresponds to a typical design of a large modern transport aircraft wing, with its
primary design point being that of transonic cruise flight efficiency. At this design point the objective
of optimization is minimum drag, but this must be achieved without detriment to other aerodynamic,
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structural, and geometric quantities. Hence, four strict constraints were imposed, to ensure that
improvements achieved can be attributed solely to improvements in the geometric design.

1. Total lift � total lift of initial wing. This is an essential constraint, and involves total lift and
not lift coefficient.

2. Root bending moment � root bending moment of the initial wing. Major structural members
of the wing are sized according to these loads, and as such any increased moment would
impact negatively on wing structural weight.

3. Root torsion moment � root torsion moment of the initial wing, imposed for the same reasons
as given in the above constraint.

4. Internal volume � internal volume of initial wing. It has been demonstrated in previous
works [20] that reductions in drag can be achieved by allowing internal volume to decrease,
and so these designs do not truly represent design improvements.

The economical cruise flight Mach number for the MDO wing defined by Allwright [21–23] is
0.85, with the wing trimmed to obtain a lift coefficient of 0.452. This design case is well suited to
inviscid flow analysis by solution of the Euler equations, since induced and wave drag form a major
part of the total drag. Furthermore, two-dimensional aerofoil optimizations have shown previously
that the improvements achieved through inviscid optimizations in transonic Mach numbers are
also realized in viscous analysis [19, 20]. A 330 000 point-structured multiblock mesh was used,
generated by the techniques of Allen [39]. Flow solutions are provided by an inviscid, structured
multiblock finite volume upwind solver [40–43] using the flux vector splitting of van Leer [44, 45]
and incorporating multigrid acceleration [46].

4.1. Results

The optimization was run with the following design parameters:

1. Global: Only two issues are considered, dihedral and sweep. There are 15 domain element
slices, and the root section is fixed in position and, hence, there are 14 sweep design variables
and 14 dihedral variables (28 parameters).

2. Intermediate: Each domain element slice has three local design variables, the (x, z) location
of the quarter chord point and the rotation of that element (45 parameters).

3. Detailed: Each two-dimensional domain element slice also has the full set of 21 active design
variables developed for free-form aerofoil design [19, 20] (315 parameters).

The three levels of parameters above are combined to give a total of 388 active design variables.
It should be noted that if level 1 parameterization was used alone, wing angle of attack and a twist
parameter would need to be added, and level 2 parameterization alone would also include chord
and thickness for each domain element, but these are already included in the parameters in level 3,
so are not required when combined.

The results of this optimization are given in Table I. Hence, free-form control of aerofoil profile
geometries combined with design variables that enable truly three-dimensional planform alterations
here achieves a reduction in drag coefficient of over 18%, and this is a significant reduction. Along
with the objective and constraint parameters, the table also shows the volume entropy value. The
local value of entropy in each cell is evaluated using Equation (12) and the total value in the
entire domain is summed using (13). This represents a measure of the amount of non-isentropic
processes in the entire flow field. The reduction achieved here is due to the reduction of shock
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Table I. Wing optimization results.

Initial Optimized %Diff

Cl 0.4523 0.4530 +0.14
Cmbending 0.1340 0.1004 −25.03
Cmtorsion −0.0547 −0.0471 −13.93
Volume 387.14 401.60 +3.73
Cd 0.02780 0.02287 −18.29
Entropy 0.0149 0.0123 −16.91

Figure 3. Optimization history.

strength, and clearly highlights the link between entropy and drag generation. It was also shown
in [19, 20] that field entropy is an interesting quantity to examine and may even be a useful objective
function.

e= Plocal/�
�
local

P∞/��∞
−1 (12)

evol=
∑Ncells

N=1 eN ∗VN∑Ncells
N=1 VN

where VN is cell volume (13)

Figure 3 shows the optimization history of objective function and constraints, showing that
only 30 evolutions are required (in fact 40 evolutions were performed but there were no changes
after 29). Optimization has had the beneficial effect of significantly reducing both root bending
and root torsion moments. In addition wing internal volume has increased slightly.
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Figure 4. MDO parameterization: MDO wing and domain element.

Initial and optimized domain element and wing geometries are depicted in Figures 4 and 5.
The most notable change to the optimized wing is to the sweep distribution; not only has sweep
been increased significantly, but the leading edge is no longer straight such that there is increased
sweep angle towards the tip. Root torsion moment is rigidly constrained and an increased sweep
angle normally impacts negatively on this, but observation of Figure 8 demonstrates that loading
has moved significantly inboard such that sweep angle can be increased in an effort to reduce drag
with no penalty to root torsion moment. In fact both root torsion and root bending moments have
been reduced significantly when compared with the initial MDO wing, and reduced root moments
could provide possible weight savings. Figure 8 also shows that drag has increased slightly inboard
due to the increased loading there, but at all outboard locations the drag is significantly reduced.

The optimized wing has been deformed considerably from its initial geometry. Figure 6 depicts
views of CFD surface and volume meshes corresponding to initial and optimized wing geometries.
Even though the deformation is dramatic, the parameterization method preserves a high-quality
CFD mesh.

Figure 7 depicts contours of coefficient of pressure (Cp) for the initial MDO and optimized
wing geometries, showing the large change in flow structure. Figure 9 also shows the sectional
Cp distributions of the initial MDO and optimized wings, transformed on to a rectangular wing
of unit chord and span to enable comparison.

The MDO wing in its economical cruise flight exhibits a strong shock along the entire length of
the span. The free-form design control allowable by the parameterization developed here achieves
a reduction in drag of over 18% and results in a completely shock-free wing. This is a considerable
result considering the constraint on a high value of lift and at a high transonic Mach number. From
Figure 9 it is clear that the wing has truly achieved an improvement in geometric design; a smooth
Cp distribution that is completely shock-free along the entire span of the wing is obtained.
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Figure 5. Domain element and wing geometries (initial MDO—light, optimized—dark).

Figure 6. CFD volume mesh deformation. Initial MDO mesh—black, optimized mesh—white.

Sectional slices through the transformed wing are shown in Figure 10 and compared with the
initial MDO wing geometry. Significant aerofoil section changes (and twist distribution) are clearly
seen. Root incidence is increased, but with a larger wash-out, highlighting that inboard sections
are more highly loaded with relief towards the tip. The global smooth interpolation functions used
here guarantee that smooth surface changes are applied, and so this approach is equally valid for
optimization including viscous effects. However, it should be noted that the results may be slightly
different, for example the high suction on the upper surface produced towards the tip would not be
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Figure 7. Cp distributions: (a) initial MDO and (b) optimized.

Figure 8. Spanwise distributions: (a) lift and (b) drag.

present in a viscous flow optimization, but the ability to produce subtle surface changes capable
of reducing the transonic effects has been proven here.

4.1.1. Cost. The cost of the scheme scales almost linearly with the number of design parameters.
Each evolution requires a flow solution for two perturbations in each design variable (one positive
and one negative to produce a central difference) and an average of around two flow solutions
to evaluate the allowable step-size in surface evolution. Hence, this solution required around

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:297–312
DOI: 10.1002/fld



HIGH-FIDELITY AERODYNAMIC SHAPE OPTIMIZATION 309

Figure 9. Surface Cp distributions: (a) initial MDO and (b) optimized.

Figure 10. Aerofoil profiles, initial (dashed) and optimized (solid).

23 000 flow solutions for 30 evolutions. However, the method has been parallelized such that each
sensitivity evaluation can be performed independently. Each flow solution is also restarted from a
previous solution, to significantly reduce the cost.
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5. CONCLUSIONS

Aerodynamic shape optimization technology using an efficient domain element parameterization
approach has been presented. Design parameters control the domain element point locations and,
through efficient global interpolation functions, deform both the surface geometry and corre-
sponding CFD volume mesh, in a fast, high quality, and robust fashion. This domain element tech-
nique is mesh topology and mesh generation package independent, requiring only an initial mesh.

The parameterization technique allows the combination of variables of different scales and
types with only a few parameterization nodes, and this leads to a significantly reduced number
of design variables for three-dimensional applications when compared with many other types of
shape parameterization method. Derivatives of these design parameters are computed via second-
order finite-differences, to ensure flow-solver independence, and fed into an FSQP gradient-based
optimizer.

The optimization tools have been applied to aerodynamic shape optimization of the MDO wing
in transonic cruise, with the objective function being drag, subject to strict constraints. Using 388
combined global and local parameters results in a totally shock-free wing with over 18% reduction
in inviscid drag, combined with significantly reduced root aerodynamic moments.

Off-design performance has not been considered here, as proof of the optimization method’s
capability is the primary aim of this paper, but future work will include multi-point optimization
using either several objective functions or combining those at different cases, as in [47, 48].

In-house CFD mesh generation and flow solution codes are used here, but the method is
completely generic and can be wrapped around any appropriate tools. Furthermore, although an
external aerodynamic design problem is presented, this is not a restriction and the methods can be
applied to any steady-state fluid dynamic design problem.
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